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The response of homogeneous and isotropic turbulence to streamwise straining
action provided by planar expansion waves has been studied experimentally in the
CCNY shock tube research facility at several Reynolds numbers. The reflection of
a propagating shock wave at the open endwall of the shock tube generated an
expansion fan travelling upstream and interacting with the induced flow behind the
incident shock wave which has gone through a turbulence generating grid.

A custom-made hot-wire vorticity probe was designed and developed capable of
measuring the time-dependent highly fluctuating three-dimensional velocity and
vorticity vectors, and associated total temperature, in non-isothermal and inhomo-
geneous flows with reasonable spatial and temporal resolution. These measurements
allowed the computations of the vorticity stretching/tilting terms, vorticity generation
through dilatation terms, full dissipation rate of kinetic energy term and full rate-
of-strain tensor. The longitudinal size of the straining zone was substantial so that
measurements within it were possible. The flow accelerated from a Mach number of
0.23 to about 0.56, a value which is more than twice the initial one.

Although the average value of the applied straining was only between S11 = 130 s−1

and S11 = 240 s−1 and the gradient Mach number was no more than 0.226, the
amplitude of fluctuations of the strain rate S11 were of the order of 4000 s−1 before
the application of straining and were reduced by about 2.5 times downstream of
the interaction. This characteristic of high-amplitude bursts and the intermittent
behaviour of the flow play a significant role in the dynamics of turbulence.

One of the most remarkable features of the suppression of turbulence is that this
process peaks shortly after the application of the straining where the pressure gradient
is substantial. It was also found that the total enthalpy variation follows very closely
the temporal gradient of pressure within the straining region and peaks at the same
location as the pressure gradient.

Attenuation of longitudinal velocity fluctuations has been observed in all experi-
ments. It appears that this attenuation depends strongly on the characteristics of
the incoming turbulence for a given straining strength and flow Mach number. The
present results clearly show that in most of the cases, attenuation occurs at large
times or distances from the turbulence generating grids where length scales of the
incoming flow are high and turbulence intensities are low. Thus, large eddies with
low-velocity fluctuations are affected the most by the interaction with the expansion
waves. Spectral analysis has indicated that attenuation of fluctuations is not the same
across all wavenumbers of the spectrum. The magnitude of attenuation appears to
be higher in cases of finer mesh grids.
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Figure 1. Schematic of flow interaction with expansion waves.

1. Introduction
Several investigators (Sternberg 1954; Vivekanandan 1963; Viswanath &

Narashima 1973; Narashima & Viswanath 1975; Morkovin 1955; Johnson 1993)
have provided direct or indirect evidence demonstrating that in supersonic flow past
an expansion corner, the boundary layer reverts from a turbulent state upstream of the
corner to a laminar state downstream. This indicates that expansion regions may sup-
press the level of turbulence activity within a compressible boundary layer completely.
This is not unexpected since the boundary layer after the expansion corner encounters
a favourable pressure gradient and a strong dilatation effect. Streamline curvature
over the convex corner also contributes to a significant reduction in turbulence. This
substantial reduction in turbulence can lead to relaminarization of the flow field.
Narasimha & Viswanath (1975) attempted to identify a criterion for the occurrence
of such reversion, following the theoretical work of Narasimha & Sreenivasan (1973)
performed at low speeds, which uses the ratio of the pressure gradient to a character-
istic Reynolds stress gradient as the parameter governing the completion of reversion.

Dussauge & Gaviglio (1987) studied the rapid expansion of a turbulent boundary
layer in supersonic flow both analytically, based on the rapid distortion theory of
Hunt (1973) and experimentally, concentrating on the effect of bulk dilatation on
turbulent fluctuations. The authors indicated that their Mach 1.76 turbulent boundary
layer had been relaminarized by the expansion. Following the same hypothesis as
the previously mentioned authors, Smith & Smits (1991) used the rapid distortion
approximation (RDA) to simplify the Reynolds stress equations, retaining terms,
which were then modelled as functions of the Reynolds stress tensor and gradients
of the mean flow.

Arnette, Samimy & Elliot (1995) and Dawson, Samimy & Arnette (1994) provided
more detailed information on the structure of turbulent boundary layers through
expansion corners.

In the present work, the straining of isotropic and homogeneous turbulence in the
longitudinal direction through an interaction with moving expansion waves (figure 1)
has been studied experimentally in our shock-tube facility. In all experiments, the
main objective has been to obtain a better understanding of the physics of the
interactions and to establish the behaviour of the vorticity field.

Some of the fundamental aspects of turbulence can be studied better in flow con-
figurations where the flow is nearly homogeneous and turbulence is nearly isotropic,
where no turbulence is produced and the geometry of the flow is reasonably simplified.
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Figure 2. Shock tube facility at CCNY.

The presence of a solid wall as a boundary in turbulent flows complicates under-
standing by introducing large mean velocity gradients at the wall which are responsible
for the continuous production of turbulence. Better understanding of the effects of
expansion waves on turbulence, can be obtained by considering their interaction with
grid-generated turbulence where no streamline curvature and a wall with no-slip
conditions are present. The flow behind a turbulence-generating grid contains a large
variety of turbulent scales, the size of which depends on the distance from the grid
and on its mesh size.

An attempt has been made to measure vorticity in the present flow. Vorticity is
a quantity that can describe viscous effects in the absence of baroclinic effects in a
flow field, much better than velocity, and it is well suited for defining and identifying
organized structures in time-dependent vortical flows because the streamlines and
pathlines are completely different in two different inertial frames of reference. In
that respect, better understanding of the nature of turbulent structures and vortical
motions of turbulent flows, particularly in the high-wavenumber region, often requires
spatially and temporally resolved measurements of velocity derivatives.

2. Experimental set-up and techniques
The interactions have been investigated experimentally in the CCNY shock tube

facility (figure 2). The shock tube facility is of large-scale dimensions with an inside
diameter of 12 in (304 mm) and total length of 90 ft (27.4 m) including all components.
The present shock tube facility has three distinguishing features. The most significant
one is the ability to control the strength of the reflected shock and the flow quality
behind it by using a removable porous endwall, placed at the flange between the
dump tank and the working section. The impact of shock wave on the endwall would
result in a full normal shock reflection in the case of zero porosity (solid wall), a weak
shock reflection in the case of moderate porosity, or expansion waves in the case
of 100 % porosity (open endwall). The second feature of the facility is the ability to
vary the total length of the driven section by adding or removing one of the several
pieces or modules that are available, or rearranging their layout. Proper arrangement
of the layout of the various modules of the shock tube can maximize the duration
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of the useful flow. The third feature of the facility is its large diameter, which allows
for a large area of uniform flow in the absence of wall effects to be available while
providing a platform for high spatial resolution in the measurements of turbulence.

The working (test) section is fitted with several hot-wire and pressure ports. Thus,
pressure, velocity and temperature data can be acquired simultaneously at various
locations downstream from the grid, and therefore reduce the variance between meas-
urements. High-frequency pressure transducers, hot-wire anemometry and Rayleigh-
scattering techniques for flow visualization have been used in the present investigation.

A turbulence-generating grid installed in the beginning of the working section of
the facility was used to generate a homogeneous and isotropic turbulent flow. The
interaction of this flow with expansion waves was produced by using an open endwall.

In order to identify correctly the duration of the useful flow as well as the location
of the true expansion wave – turbulence interaction, a predictive tool was developed
based on the predictor–corrector total variation diminishing (TVD) scheme. The TVD
scheme is an explicit Eulerian finite-difference upwind scheme and an extension of
the Roe (1981) scheme to second-order accuracy in space and time. The advantage of
the TVD algorithm is that a code based on it is simple, fast, and yet performs well.
It is widely used in describing wave motions and patterns in shock tubes. The length
of the shock tube has been discretized into 100 intervals and the time step has been
controlled by the Courant–Friedrichs–Lewy number. These simulations indicated the
existence of two regions of travelling expansion waves. The first one is generated
immediately after the rupture of the diaphragm and travels in the opposite direction
to that of the shock wave. It is reflected over the endwall of the driver section and
then it travels in the same direction as the incident shock wave at a much higher
speed owing to the already induced flow. The second system of expansion waves is
generated at the open end of the driven section when the incident shock reflects over
the open end of the shock tube’s working section where the pressure is atmospheric.
This system of expansion waves has been used in the present experiments to interact
with the induced flow behind the incident shock wave, which has travelled through a
turbulence-generating grid.

Figure 3 demonstrates the density contours of a typical experiment along the 12 in
diameter shock tube with the 2 ft working section attached to it. All regions are
clearly labelled, especially the useful data duration, which is of vital importance
for uncontaminated data processing. In general, it is clear that the induced flow
is separated into three distinct regions: passing through the grid; followed by the
transient interaction with the expansion wave (non-stationary region); and after that,
decaying in the region after the interaction. The latter is a region of interest. One of
the controlling parameters for that interval is the initial bursting pressure in the driver
section (P4). The TVD program was used to simulate different ranges of pressure to
optimize for the one that gives the longest flat region after the expansion has passed.

The working (test) section is fitted with several hot-wire and pressure ports. Thus,
pressure, velocity and temperature data can be acquired simultaneously at various
locations downstream of the grid, and therefore reduce the variance between measure-
ments. High-frequency response pressure transducers and hot-wire anemometry have
been used in the present investigation. Pressure transducers were placed throughout
the driven section in order to monitor the passage of the shock wave and also to check
its uniformity through the driven section. For the present experiments of velocity and
vorticity measurements, high-frequency response Kulite pressure transducers (type
XCQ-062) were installed in the shock tube at several locations, so that wall pressure
could be measured simultaneously as a function of time.
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Figure 3. Density contours along the length of shock tube. P4 = 217.2 kPa.
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Figure 4. Two-dimensional schematic of the working section with pressure and hot-wire tap
locations along the 2 ft length for the experiments with X-wires. (Not to scale).

To resolve simultaneously two-dimensional velocity components with hot wires,
a cross-wire (X-wire) arrangement was used. New three-wire probes were designed
and custom built. Five different three-wire probe assemblies were used concurrently
at different downstream locations, all adjustable to different lengths, each carrying
two hot wires in an X configuration and one cold wire for simultaneous velocity
and temperature measurements, respectively. The three-wire probes were equipped
with 5 µm platinum/tungsten wires for velocity measurements and with a 2.5 µm
platinum/tungsten wire for temperature measurements. This experimental set-up
(figure 4) provided time-dependent measurements of two-velocity components,
temperature and wall pressure at several locations of the flow field simultaneously.

The cross-wires were driven by DANTEC anemometers (model CTA56C01) and the
temperature wires were connected to EG&G model 113 low-noise battery-operated
pre-amplifiers/filters. The output signal of the cold wire was digitally compensated for
thermal lag up to frequencies of interest. For more details on the hot-wire techniques
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Figure 5. (a) Cross-wire probes staggered along the working section. (b) Two-dimensional
schematic of the working section with pressure and vorticity probe locations along the 2 ft
length. (Not to scale.)

applicable to shock tubes, see Briassulis et al. (1995) where estimates of uncertainties
in the measurements are also given.

To eliminate any wake effects from probes located upstream, all the probes were
staggered at increasing distances from the tube wall with downstream station and at
different azimuthal positions (see figure 5a).

In addition, time-dependent three-dimensional vorticity measurements were carried
out by using a new vorticity probe (see Agui 1998; hereinafter referred to as ABA;
Andreopoulos & Honkan 1995; Honkan & Andreopoulos 1997a; Briassulis, Agui &
Andreopoulos 2001). Figure 5(b) shows the arrangement for the simultaneous mea-
surements of vorticity and wall pressure.

The shock tube was pressurized so any leaks could be detected, as well as to
calibrate the pressure transducers. The shock tube was free of leaks and the static
response of the transducers was found to be linear. Aluminium plates were used as
diaphragms and were placed between the driver and the driven, initially conically
shaped, section.

A detailed description of the facility and the results of the qualification tests can
be found in Briassulis et al. (1995) and BAA. Details of this set-up can be found in
Agui, Briassulis & Andreopoulos (2005), hereinafter referred to as ABA.

All data were digitized by four National Instruments analogue-to digital-converters
(model NI PCI 6120) with 16 bit resolution and 800 kHz per channel for a total of
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16 channels. The data acquisition system was triggered by the arrival of the shock
wave at the location of a wall pressure transducer upstream of the grid. The grid was
installed in the beginning of the working section.

The frequency response of the hot-wire probes, as measured during the passage of
the incoming shock wave which provided the input step change, was found to be of the
order of 100 kHz. This value is based on the spatially averaged longitudinal velocity
at the centroid of the probe. The cold-wire signal had a flat frequency response up to
about 8 kHz and it has been digitally compensated (see Briassulis et al. 1995).

Tables 1 to 4 provide information on the bulk parameters and operating conditions
of the experiments.

3. Vorticity measurements
The vorticity probe developed and used in our previous work (BAA; ABA) has been

also used in the present investigation. The probe is capable of measuring velocity-
gradient related quantities in non-isothermal flows or in compressible flows. The
present design is the outcome of our experience gained with vorticity measurements in
incompressible flows by using a probe with nine wires, and with velocity measurements
in compressible flows by using single- and cross-wire probes (sees Briassulis et al. 1995;
ABA).

The present vorticity probe consists of 12 wires arranged in three modules (figure 6).
Each module contains four sensors; three hot-wire sensors operated in the constant
temperature mode (CTM) and one cold-wire sensor operated in the constant current
mode (CCM). The three wires on each module are mutually orthogonal to each other
oriented at 54.7◦ to the probe axis. Each of the 5 µm diameter tungsten hot-wire
sensors was welded onto two individual prongs, which have been tapered at the tips.
Each sensor is operated independently since no common prongs are used. Each of
the 2.5 µm diameter cold wires was located on the outer part of the submodule.

Extensive testing of the probe has been carried out to assess its performance in
shock-tube flows. See BAA and ABA for details of the tests and the techniques associ-
ated with the use of the probe. The probe was also tested in low-speed incompressible
boundary-layer flows where vorticity measurements have been obtained in the
past with a nine-wire probe and with optical techniques (see Agui & Andreopoulos
2003). The data obtained with the new probe compared well with these previous
measurements.

The data processing started with the cold-wire signals which were first converted to
total temperature. This information was used subsequently to obtain instantaneous
three-dimensional mass fluxes at three neighbouring locations within the probe. These
mass fluxes and their gradients were computed at the centroid of each module and
some corrections were applied which accounted for the mass flux gradients across each
module by using numerical techniques and algorithms used in the computations of
mass-flux gradients which were similar to those described by Honkan & Andreopoulos
(1997a, b).

Density and velocity information was recovered from the mass fluxes by decoupling
density from mass fluxes assuming that static pressure fluctuations are small (see Brias-
sulis et al. 1995). This assumption represents the so-called ‘weak’ version of the original
‘strong Reynolds analogy’ hypothesis of Morkovin (1955) since total temperature fluc-
tuations are not considered very small as in the original hypothesis. It should be noted
that in the present work, total temperature was measured directly and therefore no cor-
responding assumptions were required. The assumption about pressure fluctuations is
fully justified since the measured root mean square (r.m.s.) of pressure in the boundary
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Grid size Mesh Cu Sound Cd Sound ρu/ρd

(meshes/in) size (mm) Solidity p2 (kPa) U2u U2d Tou Tu Tod Td speed speed M2 Ws (m s−1) ReM (kgm−3)

1 2 × 2a 12.7 0.39 43.77 104 187 350 342 294 278 362 334 0.2528 405.00 122 000 1.55/1.25
2 2 × 2b 12.7 0.28 46.18 106 190 345 339 290 272 366 330 0.2609 407.25 122 000 1.53/1.20
3 3 × 3 8.5 0.39 46.53 115 170 350 340 305 285 365 338 0.2629 407.75 82 000 1.55/1.21
4 4 × 4 6.35 0.44 41.02 94 175 342 335 293 280 361 335 0.2368 400.00 61 000 1.52/1.15

Table 1. Flow properties in experiments of vorticity measurements. Subscripts u and d indicate upstream and downstream
conditions, respectively.

Cu Cd

Grid size Sound Sound ρu/ρd

(meshes/in) p2 (kPa) U2u U2d Tou Tu Tod Td speed speed M2 ReM (kgm−3)

1 2 × 2a 38.75 98 160 340 332 276 259 359 323 0.2609 110 000 1.45/1.29
2 2 × 2b 42.5 99 178 330 321 270 251 358 319 0.277 110 000 1.48/1.26
3 3 × 3 28.61 85 150 320 316 290 278 356 334 0.239 52 000 1.43/1.22
4 4 × 4 40.68 112 190 335 328 282 263 364 326 0.30 68 000 1.50/1.29
5 8 × 8 42.6 120 185 330 323 282 270 361 329 0.33 35 000 1.51/1.25

Table 2. Flow properties in experiments with X-wires. Subscripts u and d indicate upstream and downstream conditions, respectively.
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Grid size S11 1/S11 Lε/q q ε Mg Mt

(meshes/in) (s−1) (ms) S11Lε/q (ms) (m s−1) (m3 s−2) Reλ LεS11/Cu q/Cu

1 2 × 2a 218 4.58 14.32 65.7 4.97 376 488 0.226 0.0137
2 2 × 2b 161 6.21 8.405 52.2 5.22 419 426 0.105 0.0142
3 3 × 3 250 4.00 4.780 19.00 5.27 1462 450 0.070 0.0144
4 4 × 4 176 5.68 6.140 34.89 3.28 309 344 0.055 0.0090
5 8 × 8 190 5.20 2.488 12.94 5.10 2120 310 0.034 0.0140

Table 3. Incoming flow bulk parameters.

Grid size Mesh size
(meshes/in) (mm) Lε (m) λ (mm) η (mm) L11 (m) L11/Lε

1 2 × 2a 12.7 0.376 1.96 0.058 0.0340 0.0920
2 2 × 2b 12.7 0.24 1.61 0.056 0.0295 0.1220
3 3 × 3 8.5 0.101 1.79 0.041 0.0320 0.3160
4 4 × 4 6.35 0.114 2.07 0.060 0.0415 0.4080
5 8 × 8 3.17 0.066 1.20 0.036 0.0200 0.3030

Table 4. Length scales of incoming flow.

layer is below 1 % of the mean wall pressure. In addition, the measured mean pressure
gradient in the radial direction was found to be negligible. This allowed the mean value
of the wall pressure signal to be extrapolated to the location of the hot-wire probes and
to be used to separate the density and velocity signals since no mean pressure variation
has been detected across a given section of the flow. The computational procedure
involves an expression for mass flux, mi , in terms of total temperature, T0, and pressure,
p, at the centroid of each array mi = ρUi = pUi/RT =pUi/[R(T0 −UkUk/2cp)], where
Ui is the instantaneous velocity component, i = 1, 2 or 3 and UkUk = U 2

1 +U 2
2 +U 2

3 . By
using Reynolds decomposition, the velocity was further decomposed into its mean and
fluctuating parts as Ui = Ūi +ui . Full decoupling of density and velocity was achieved
through an iterative scheme. In the first iteration, the effect of the lateral velocity com-
ponents in the spanwise and normal directions, was assumed to be substantially smal-
ler that the quantity T0 − U 2

1 /2cp . Then, the above relation can be rearranged to obtain
a quadratic equation for Ui , (Rmi/2cp)U 2

i +pUi −miRT0 = 0 which has always one root
positive and one negative. The positive root only was accepted since the negative root
is unrealistic. The longitudinal velocity component U1 was computed first whereas the
other two components were obtained from the mass flux ratios as u2 =m2/m1U1 and
u3 =m3/m1U1. The values U1, U2 and U3 provided the first estimate of the velocity
components and were used subsequently to obtain a better estimate of the U 2

k /2cp .
This iterative scheme required no more than two iterations for convergence.

The streamwise derivatives of the three velocity components usually require the use
of Taylor’s hypothesis of ‘frozen’ convected turbulence to convert temporal derivatives
of velocity into spatial derivatives. In the present work, this has been accomplished
by considering the use of the full momentum equations to estimate the streamwise
derivatives of the three velocity components by ignoring the viscous terms. These
expressions can be written as

∂U1

∂x1

= − 1

U1

[
∂U1

∂t
+ U2

∂U1

∂x2

+ U3

∂U1

∂x3

− 1

ρ

∂p

∂x1

]
, (3.1a)
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Figure 6. Vorticity probe: (a) probe sensor geometry and arrays, (b) close-up view
of the probe.

∂U2

∂x1

= − 1
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[
∂U2
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+ U2
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∂U2

∂x3

− 1

ρ
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]
, (3.1b)

∂U3

∂x1

= − 1

U1

[
∂U3

∂t
+ U2

∂U3

∂x2

+ U3

∂U3

∂x3

− 1

ρ

∂p

∂x3

]
. (3.1c)

Thus, the determination of the streamwise gradients ∂Ui/∂x1 is not based entirely on
the original Taylor’s hypothesis. All the terms in the above are available at each time
step, with the exceptions of the pressure gradients. Mean values of pressure gradients
in the lateral directions are zero and their fluctuations are extremely small. In that
respect, ∂p/∂x2 and ∂p/∂x3 have been neglected in the corresponding equations.
The pressure gradient, ∂p/∂x1, which appears in the streamwise gradient of the
longitudinal velocity is not zero through the flow expansion zone. Figure 7(a) shows
three wall pressure signals obtained at three different locations below the hot-wire
probes in the working section. Their temporal gradients, ∂p/∂t , are also shown in
the same figure. These temporal gradients were converted to spatial gradients of
pressure, ∂p/∂x1, by considering their propagation into the upstream flow which
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Figure 7. (a) Typical time-dependent wall pressure signals and their temporal gradients at
three different locations in the working section below hot-wire probes for a 2 × 2a grid.
(b) Computation of velocity gradient, ∂U1/∂x1, from contributing terms, case of 4 × 4 grid.
Signals are shifted by multiples of 5000 s−1.

takes place with a relative velocity equal to that of the local speed of sound, C.
This propagation velocity of EW relative to laboratory coordinates is C(t) − U1(t)
where U1 is the local flow velocity. Both time-dependent quantities, C and U1, are
available from the combined temperature and velocity measurements. In that respect,
the spatial gradient was evaluated from the temporal gradient through the relation
∂p/∂x1 = −(∂p/∂t)(1/(C − U1)). The contribution of this term as well as those of
the other terms into the final computed value of S11 = ∂U1/∂x1 is demonstrated in
figure 7(b) where each of the individual terms is plotted separately.

The data in figure 7(b) clearly show that the major contribution to S11 comes
from the term −1/U1∂U1/∂t which provides most of its high-frequency content.
The terms −U2/U1∂U1/∂x2 and −U3/U1∂U1/∂x3 are substantially smaller than the
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leading term, a finding which also agrees with BAA and ABA. The contribution
from the pressure gradient term 1/(ρU1)∂p/∂x1 = −1/(ρU1)∂p/∂t1/(C − U1) appears
to provide a low-frequency content of modest amplitude in the final value of ∂U1/∂x1.
The only assumption made in the present analysis is that the magnitude of the pressure
fluctuations inside the flow field is negligible to the mean pressure upstream and
downstream of the interaction or to the slowly varying pressure within the expansion
zone. This assumption introduced an uncertainty into the computations which will
be considered below. It should be emphasized that only S11 is affected directly by
the pressure gradient along the straining expansion zone where the interaction takes
place. The rest of the velocity gradients and therefore all components of vorticity, are
not affected directly by pressure gradients.

4. Probe interference with expansion waves
The present flow is configured in a shock tube by taking advantage of the induced

flow behind a moving shock wave and using hot-wire probes to measure velocity
which although small in size can, in principle, interfere with the flow. The incident
shock wave impinges on the probe and its holder, reflects, and wraps around the
probe. It regroups quickly after this into a planar shock, again moving towards the
open endwall of the shock tube where it reflects as a set of expansion waves travelling
in the opposite direction. Although the hot-wire sensors are always measuring velocity
vectors with a predominant orientation in the downstream direction, the expansion
waves travel in the opposite direction, they may interact with the probe holder and
the after-body of the hot-wire probe and alter the measured velocity field indirectly.
In order to estimate the aerodynamic interference effects between the multi-wire
probe and the moving expansion waves, a computational fluid dynamics study has
been undertaken by fully simulating the time-dependent three-dimensional flow field
around the probe under the same conditions as those in the shock-tube flow. A wire
frame model of the actual probe was created in GAMBIT (figure 8a, b) and meshed
so that the flow field at the locations of the hot-wire sensors can be computed.
An unstructured mesh with 560 000 cells was created and the time-dependent three-
dimensional Reynolds-averaged Navier–Stokes equations were used. A second-order
solver provided by FLUENT was used to compute the flow field. The line-averaged
velocity vector along the cylindrical wire sensor was estimated at three different
locations of these sensors and compared with the undisturbed free-stream velocity at
a location above the probe at the same longitudinal distance. Results of the present
three-dimensional viscous calculations are shown in figure 8(c, d) where pressure
and velocity contours of the flow field around the probe are plotted immediately
after the passage of the incident shock. The pressure and velocity contours show
reflections of the shock wave over step changes in cross-sectional areas of the holder,
but the flow field at the sensor areas is reasonably uniform after the shock-wave
passage. Figure 8(e) shows the velocity contours during the passage of the expansion
waves over the probe. No non-uniformities of the flow field at the sensor areas
can be depicted. A more quantitative comparison of computed longitudinal velocity
components at the wire locations with the undisturbed free-stream velocity can be
seen in figure 8(f ). The results indicate that the velocity at the wire locations closely
follows the undisturbed velocity at all times of the flow field duration, even shortly
after the passage of the incident shock wave. The velocity at the sensors increases
during the passage of the expansion zone at the same rate as the free-stream velocity.
The small variations of the velocity at all locations under consideration observed after
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the passage of the shock are mostly due to the limited mesh size rather than to any
physical cause. The computed values of the velocity also agree reasonably well with
the measured values of the corresponding velocity component. This work indicates
that there is no interference between the probe and the expansion waves and that the
minor but consistent difference between measured and computed velocity magnitudes
can be absorbed in the calibration coefficients of the probes.
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5. Uncertainty estimates
The pressure and total temperature measurements depend directly, through obtained

calibration constants, on the raw voltage data from the individual sensors. These
probes, because of their linear response, produced two calibration constants, sensitivity
and d.c. offset. Therefore, estimates of the uncertainty in the measurements of pressure
and total temperature acquired through a 16-bit A/D converter depended mostly on
the bit resolution and the residual errors from the calibration constants. Uncertainties
of less than 0.5 % in pressure and about 2 % in total temperature were found for
typical measurements of these two quantities.

The mass flux measurements were tied to significantly more complex relations, which
depended on the individual and relative geometry of different sensors. Mass flux was
found to depend on the following variables: captured raw voltage Ei , reference tem-
perature Tr , total temperature T0, wire temperature Tw , calibration constants and yaw
or pitch coefficients. Uncertainty values for the velocity were estimated to be between
1 and 3 %. These values are slightly better than those in BAA and ABA because of
higher resolution of the ADCs. In obtaining all these estimates, the square root of the
squares of all partial uncertainties involved was assumed to model the error propaga-
tion into the final results. MATHCAD was used to calculate the partial uncertainties.

The density variation across the sensing area has been also estimated from the
�p/p obtained above and the measured variation of total temperature T0 through
the uncertainty propagation formula

�ρ

ρ0

=

{[
�p

pT

]2

+

[
�T

T0

]}1/2

.

This predicted approximately the same uncertainty as in the case of pressure
variation.

Following ABA, estimates of the uncertainties associated with the measurements
of velocity gradients were also obtained by considering the propagation of the
uncertainties in the measurement of each quantity involved in the process. A typical
velocity gradient is measured through the following approximation: ∂Ui/∂xj ≈ (U2 −
U1)/lp = F where U2 and U1 are the velocities at two nearby locations, lp is the
distance between these locations. If the uncertainties in the measurements of U2 and
U1 are the same �U1 =�U2 =�U3, and lp is determined accurately, then the relative
uncertainty �F/F will be given by: �F/F = {2[�U/(U2 − U1)]

2}1/2.
A typical �U is 2 % of mean U , which corresponds to about 2 m s−1 while typical

velocity differences U2 −U1 can be up to six times the r.m.s. value, u′. If a typical value
of this velocity difference is assumed of about 30 m s−1 in the near field of the grid
and 15 m s−1 further downstream, then the uncertainty �F/F appears to be 10 % in
the near field and 14 % in the far field.

It has been shown in ABA that in the limit of infinite resolution, i.e. for �xj → 0,
that (

�Ui

�xj

)2

�xj →0

=

[
U 2

i (xj )
]

λ2
ij

where λij is the corresponding Taylor’s microscale, which suggests that the velocity
gradients scale with λij . If this relation is used as ∂Ui/∂xj ≈ u′/λ= F , then lower
uncertainty estimates have been found. In this case, the relative error is �F/F =
{(�u′/u′)2 + (�λ/λ)2}1/2. For a typical relative error in u′ of 5 % and 10 % in λ, the
relative error appears to be about 11 %. It should be noted that the relative error
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�F/F increases as the distance from the grid increases because the absolute value of
F decreases.

Finally, the finite number of statistically independent events considered in the
data analysis of certain flow cases introduces an uncertainty in the statistical results.
Computations of the integral time scale, Lt from auto-correlation functions R11(τ )
indicated that the number of independent samples, in general, was between 80 to
120. Downstream of the interaction, Lt decreases and the number of statistically
independent events is increased.

The onset of the useful data duration in the upstream of the interaction region is
also delayed by the arrival of the air mass, which has not passed through the grid.
The number of independent samples in these cases was about N≈ 60–100. Bendat
& Piersol (2000) indicate that the relative error in the estimate of the variance of
the velocity fluctuations is 2/N , which for this specific case is between 2 to 4%. It
should be noted that N depends on the shape of R11 that can be extended to large
values if low-frequency variations are present in the flow-field. In the case of high-pass
filtered data, which are discussed in the next section, Lt is reduced substantially and
N increases by a factor of 2.

More direct evidence of the adequacy of statistical samples can be provided by the
rate of convergence of the various statistical quantities, which are computed in the
present data analysis. As shown in BAA, estimates of the convergence uncertainties
observed in the present analysis indicate an error of less than 3%. This error is
substantially less at higher Mach numbers and closer to the grid locations.

It should also be mentioned that the above discussion is mostly pertinent to the
statistics of velocity components. Most of the contributions to vorticity and velocity
gradient statistics come from events of much smaller size than those represented by
the integral time scales. These are plentiful and therefore there is no effect on their
statistics because of finite number of statistically independent events.

The spatial resolution of the probe is between 0.6λ and 1λ upstream of the shock
region and between 0.4λ and 0.6λ in the downstream region. The scales of error
expressed in Kolmogorov’s viscous scale η = (ν3/4/ε)1/4 appear to be in the range of
8η–15η upstream of the interaction region and improve substantially downstream
of the interaction because the length scales increase. In that respect, the expected
attenuation of the measurement of vorticity r.m.s. owing to limited spatial resolution
is not significant.

6. Data analysis, decomposition and reconstruction
A closer look into the time-dependent signals within the EW indicated that several

quantities are characterized by a low-frequency variation which starts at the head
of the EW fan and ends at its tail, and a higher-frequency component which could
be attributed to turbulence. In that respect, all time-dependent signals have been
decomposed into two major components, one with low-frequency content and one
with high-frequency contributions by low-pass and high-pass filtering the signals.
Thus, a typical quantity Q(t) is decomposed as

Q(t) = QLP(t) + QHP(t). (6.1)

This decomposition can be considered as a direct outcome of the Fourier series
expansion in-time of the original signal and separating the two components below
and above a certain frequency. In practice, however, low-pass and high-pass filtering
of the original signals causes some distortion around the cut-off frequency, which
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is the same for both filtering operations. The time scales of the expansion wave
passage and the time scales of turbulence were reasonably far apart from each other,
and therefore no information has been compromised by the data filtering. Low-pass
filtering removed the fluctuations due to turbulence from the signal so that the
characteristics of the expansion zone were revealed since they were separated from
turbulence. High-pass filtering removed the low-frequency effects of the expansion
waves and only turbulent fluctuations were retained with zero mean. This operation
is called trend removal in signal processing.

Figure 9(a) shows the decomposition of longitudinal velocity U1 into its low- and
high-pass filtered components, U1,LP and U1,HP, respectively. The low-pass component
represents the trend in the velocity increase owing to the flow acceleration caused by
the passage of the EW and it is free of any frequency content above the 500 Hz cutoff
value. The HP filtered component does not show low-frequency components or trend
and it includes the high-frequency components of the signal. In order to demonstrate
the effectiveness of the decomposition, the two components have been re-combined
to form the reconstructed signal QLP(t) + QHP(t) = QR(t), which does not differ from
the original signal Q(t) (see figure 8a).

All the components of the velocity gradient tensor exhibit practically a zero mean
value within the EW with the exception of S11 which shows a trend, i.e. a low-frequency
component which shows some variation with time. The decomposition of S11 into LP
and HP components is shown in figure 9(b). It appears that the reconstructed signal
is identical to the original one, indicating that the decomposition does not distort the
signal. It also suggests the validity of this process. The LP component increases slightly
directly after the encounter with the head of the EW and it shows a positive value
within the interaction zone which is slowly decreasing towards the tail of the EW.

The LP component of the vorticity component Ω3 (figure 9c) does not show any
low-frequency content of appreciable amplitude. As a result of this decomposition,
the HP components of all quantities represent the true turbulence, uncontaminated
by the effects of a low-frequency trend and therefore they can be further processed
to identify the effects of EW on turbulence. All HP signals now have a zero mean
value and they are non-stationary. In order to demonstrate the amplitude of the
fluctuations within this interaction, the region was subdivided into several subregions
of shorter time than the EW time scale and the r.m.s. of the fluctuations within
each of these subregions was computed. This short-time averaged information within
each of the zones is not an accurate value of the true r.m.s. because the process is
not stationary. It represents, however, a reasonably good estimate of the amplitude
of the fluctuations within each subregion. In some respects, the processes involved
can be considered as quasi-stationary within each of these subdivisions. These r.m.s.
values, 〈σi〉, are normalized by the corresponding r.m.s. value in the upstream region,
σu, which has been calculated from the data in the quasi-steady part of the signal
upstream of the EW. The r.m.s. value in the region downstream of the EW, σd , has
been similarly calculated from the quasi-steady data after the interaction. Both σu and
σd represent the true values of the corresponding quantities which have been tested
for convergence and stationarity in the regions before and after the passage of the
EW. Thus, the ratio 〈σi〉/σu indicates amplification or attenuation of the fluctuations
within the interaction.

This data analysis was conceived to demonstrate the decay of fluctuations of several
quantities within the EW which appears to dampen their amplitude. The data of S11,HP,
for instance (figure 9b), clearly demonstrate a pattern of decaying fluctuations within
the EW. Figure 10(a) shows the variation of these short-time averages, 〈σi〉/σu within
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expansion waves (3 × 3 grid). (b) Short-time averages of r.m.s. of vorticity fluctuations within
the interaction zone of expansion waves.

the EW for different durations, i.e. bandwidths of each of the subregions. In the case
of the shortest bandwidth of 0.2 ms, the EW zone was subdivided into 20 subregions,
whereas in the case of the largest bandwidth of 0.8 ms, the EW was subdivided into
5 subregions. The length of these subdivisions affects the first 50 % of the EW only,
whereas the second half is practically independent of the length/bandwidth of the
subdivisions, and the values of 〈σi〉 in the first half of the EW decrease with increasing
bandwidth.

A closer look at these results indicates that the pressure gradient peaks very close to
the beginning of the interaction region, i.e. within the first 15 % of its total duration,
which roughly corresponds to the location of the maximum reduction rate in 〈σi〉/σu.
Then it starts to relax some of its strength and reaches values close to zero at the
end of the duration of the interaction. In the second half of the interaction where
∂p/∂t reaches values closer to zero, the level of amplitude fluctuations of S11 appears
to be relatively independent of time and to be close to the downstream value, σd

which is smaller than the upstream value of σu suggesting a substantial attenuation
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of S11 fluctuations that is more than 50 %. It should be noted, however, that S11 is the
quantity which is affected the most by the interaction with the EW. It is also the only
quantity which is affected the most by the length/bandwidth of the subdivisions in
the first half of the interactions. The remaining quantities considered here are much
less influenced by the choice of the bandwidth.

The distribution of the short-time r.m.s. values of fluctuations of the three vorticity
components is shown in figure 10(b). The amplitude of fluctuations of the lateral
vorticity components appears to be changing in the first half of the interaction. In the
second half, the amplitudes of Ω2 and Ω3 fluctuations appear to have been stabilized
towards the r.m.s. value of the downstream of the interaction region, while the
amplitude of the Ω1 fluctuations still wanders around. At the end of the interaction,
the true r.m.s. of the fluctuations of the two lateral vorticity components has been
substantially reduced by about 20 % through the interaction while the longitudinal
vorticity r.m.s. has been slightly amplified by 17 %. One critical observation in this
behaviour is that although the incoming turbulent flow is reasonably isotropic, the
outcome of the interaction is a rather strongly non-isotropic flow field. This behaviour,
which is related to the return to isotropy, still has to be further investigated.

7. The flow field
There is a substantial amount of data documenting the homogeneity and uniformity

of the upstream and downstream of the interaction flow region (see BAA; ABA).
The present data also suggest that the flow within the interaction remains reasonably
uniform in the radial and azimuthal directions, while acceleration takes place in the
longitudinal direction. Evidence of this is shown in figure 11(a), where the time-
dependent low-pass filtered pressure signals shown originally in figure 7(a), have been
shifted in time by an amount equal to the flight time of the head of the expansion
waves required to travel from one to the next pressure transducer location. The
data indicate that the pressure and its temporal gradient remained unchanged in
the longitudinal direction at fixed times, which implies that the pattern is convected
without substantial deformation or distortion, although the tail of the EW is known
to propagate with slightly slower speed than the head, and therefore the duration of
the expansion waves increases slightly as they travel upstream.

Figure 11(b) shows the U1 and U2 velocity components obtained with cross-wire
probes at two locations different in the longitudinal and radial directions. The two
signals of the longitudinal velocity are close to each other in the upstream of the
interaction region and they start to divert slightly from each other at the onset of the
interaction. At the end of the interaction, the downstream hot-wire indicates velocities
which are 2 to 3 % higher than those upstream. Although this difference is of the
order of the uncertainty measurements, most probably, it can be attributed to viscous
effects at the wall. The lateral components show no difference with downstream
location change.

This small variation in the velocity components within the flow field suggests
that the lateral strainings S12,LP and S22,LP are small. Additional wall-pressure data
showed no circumferential variation. Thus, it is reasonable to conclude that the
present homogeneous and isotropic flow is strained in the longitudinal direction only
by the bulk straining S11,LP. During the expansion of the flow, the lateral rate of
strains S12,LP, S22,LP, S13,LP and S33,LP remain small and possibly unaffected by the
reduction of the wall boundary-layer thickness owing to the sudden external flow
acceleration. As a result of this bulk flow behaviour, the only key production term in
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the turbulent kinetic energy transport equation during the flow expansion appears to
be the term −u2

1S11. This term is always negative and since it acts as a sink, turbulence
is suppressed during the interaction.

In the case of one-dimensional frictionless flow with left-running expansion waves
moving relative to a flow with velocity equal to the speed of sound Cu = (γpu/ρu)

1/2,
continuity of mass flow in a control volume fixed on the local expansion waves yields
that the infinitesimal change of velocity across a short length of expansion waves
after neglecting second-order differentials is

dC = −C
dρ

ρ
, (7.1)

with C being the velocity in the coordinate system associated with the head of the
expansion waves. This can be integrated to obtain ln C = − ln ρ + lnA or Cρ = A

where A is a constant and therefore the relation between upstream (Cu, ρu) and
downstream conditions (Cd , ρd) is Cd/Cu = ρu/ρd . The velocity difference �C = Cd −
Cu = (�ρ/ρd − 1)Cu is the velocity increase between the upstream and downstream
regions in a reference coordinate system moving with the velocity Cu of the expansion
waves and, in fact, it is the same in a laboratory coordinate system since the relative
velocity of the moving expansion waves to the laboratory coordinates is Ud − Cu.
Thus, �U =Ud − Uu = �C is the same relative to laboratory coordinates.

After similar manipulations of the momentum equation, the following relation can
be obtained for the pressure drop dp = −ρCdC which becomes

dp = C2 dρ. (7.2)

Integration between upstream and downstream conditions and use of continuity yields

pd − pu = C2
uρ

2
u

∫ ρd

ρu

ρ−2 dρ = −C2
uρu

[
ρu

ρd

− 1

]
.

For the measured data shown in figures 7(a) and 9(a), which are typical of the
present experiments, with pu = 144 kPa, and ρd/ρu = 1.25/1.55, the velocity and
pressure changes predicted by these two equations appear to be �C = �U =
0.24Cu = 86.4 m s−1. This is close to the measured 83.3 m s−1. For Cu = 360 m s−1

we obtain �p =48.2 kPa, close to the measured 49 kPa. Thus, the measured mean
quantities of velocity and pressure in the present experiments are reasonably close to
those predicted by one-dimensional theory. In addition, the computed results of lon-
gitudinal velocity and pressure obtained in the CFD work related to the flow around
the vorticity probe agree well with measured time-dependent quantities (see figure 8f ).

The incoming flow is isotropic and therefore the time-average correlation U1U2 is
expected to be small. Figure 11(c) shows signals of the time-dependent quantity U1U2

and its low- and high-pass filtered components 〈U1U2〉LP and 〈U1U2〉HP, respectively.
The low-pass filtered signal of the longitudinal velocity 〈U1〉LP is also plotted for
reference. The amplitude of the 〈U1U2〉HP component appears to be small in the
upstream region and its mean value is close to zero. However, its fluctuations increase
substantially during the interaction. This amplification starts from the beginning,
immediately after the onset of the straining action and its amplitude is reduced
slightly towards the end of the interaction and in the downstream region where time
scales are faster than in the upstream region, and reaches a value which is much
higher than in the upstream region.

The amplitude of the low-pass signal, which is displaced by 0.50 units, shows some
small-amplitude variation, but its time-averaged value is close to zero before the



322 S. Xanthos, M. Gong and Y. Andreopoulos

interaction. However, during the interaction, its amplitude increases substantially and
large-scale variations appear which take some time to subside. Thus, the axisymmetric
straining introduces a strong anisotropy into the initially isotropic field. The return to
isotropy of the turbulent flow after the passage of the expansion waves is not that fast.

According to rapid distortion theory (RDT), in flows where turbulence is distorted
by a rapidly applied mean shear S11 = [∂U1/∂x1]Inter that is produced by an expansion
wave, the controlling parameter is the ratio of the timescale of turbulence Tε = Lε/q

to the time scale of the applied strain, 1/S11, i.e. Rt = LεS11/q . Lε is the dissipative
length scale defined as Lε = q3/ε, q is the square root of the turbulence kinetic energy
q = [1/2uiui]

1/2 and ε is the dissipation rate of turbulent kinetic energy q2. Thus, the
ratio appears to be Rt = q2S11/ε. The full dissipation rate has been evaluated in the
present work. In this case E =Es + Ed with

Es = µΩkΩk + 2µ

[
∂Ui

∂xj

∂Uj

∂xi

− SkkSkk

]
, Ed = 4/3µ/kkSkk.

The strain rate S11 is associated with the imposed disturbance. Mean values of S11

have been computed from the present data by averaging the time-dependent data over
the duration of the distortion and the corresponding times scales TEW are plotted in
figure 12(a) as a function of the Reynolds number based on the Taylor’s microscale λ
together with the dissipative time scales Lε and their ratio Rt . Values of TEW appear
to be fairly constant at most experiments, but at the two highest Reλ they drop off
because of slightly stronger interactions. The characteristic dissipative time scale of
turbulence Tε seems to increase with Reλ. The ratio of the time scales Rt shows a
trend to increase with Reλ. However, its values are not all substantially greater than
1. These data indicate that the imposed disturbance is not as rapid in speed and
duration as a shock wave, although faster than the corresponding eddy turn-over
time Tε , a feature which allows for analysis of data obtained inside the expansion
wave. The evidence shown in figure 12(a) suggests that, for some cases, the use of
RDT is marginally justified. A closer look of the time derivative of pressure shown
in figure 11(a) indicates the existence of two time scales in this signal. The first one
is associated with the onset of the interaction and the fast-changing rate towards its
local extreme value, and the second one is associated with the relaxation process after
the maximum effect has been applied. The latter time scale is about four times longer
than the first one. If the time scale of the fast-changing part is used in Rt , its values
will be higher by a factor of four, which provides a more comfortable range for the
applicability of RTD.

The cumulative effects of flow straining can be expressed by the integral

As(t) =

∫ t

t0

S11(t
′) dt ′

which is now a dimensionless time variable. The lower limit of the integration is the
starting point of the interaction, and the upper limit t is the current time. These
integrated straining effects are shown in figure 12(b) plotted together with the corres-
ponding wall pressure as a function of time. During the interaction, As increases with
a fairly constant rate of 0.312 m s−1 and then downstream of the interaction reaches
a reasonably constant value between 0.6 and 0.7. According to RDT, turbulence after
the interaction depends only on the cumulative strain and not on the state of strain
during the interaction. The roughly linear variation of As with time suggests that S11

can be approximated as constant during the interaction and therefore variations due
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to fluctuations in S11 have no effect on As and possibly on the final state of turbulence
after the interaction.

The cumulative effects of the normalized time of turbulence are expressed by the
integral

〈At (t)〉HP =

∫ t

t0

〈E(t ′)〉HP

〈1/2Ui(t ′)Ui(t ′)〉HP

dt ′

which involves the HP components only since they reasonably represent the true
turbulent kinetic energy q2 and its dissipation rate ε. Similarly, the integrated straining
effect can be evaluated as

〈As(t)〉HP =

∫ t

t0

〈S11(t
′)〉 dt ′

along with the ratio Rt (t) = 〈As(t)〉HP/〈At (t)〉HP. The results are plotted in figure 12(c).
The growth rate of these two quantities appears to be different, with the turbulent

time scale increasing at a much slower rate than the straining time. Their ratio 〈Rt (t)〉
reaches values close to 6 in the upstream region and 8 downstream of the interaction
region. These values agree well with the time-averaged values shown in figure 12(a).
In figure 12(c), the values of the total instantaneous normalized straining time As are
also plotted for comparison with its HP filtered part. The values of As are shifted in
comparison with 〈As(t)〉HP because of the different starting time of integration. In the
case of As , it starts at the beginning of the interaction. The rate of growth of As is
higher than its HP component because there is a substantial LP component present
in the total As .

8. Total enthalpy
The transport equation of the total energy per unit mass, Et = e+1/2UiUi for flows

without external forces and heat addition or subtraction is given by

ρ
DEt

Dt
= −∂(pUi)

∂xi

+
∂(τijUi)

∂xj

, (8.1)

where e is the internal energy per unit mass and τij is the stress tensor equal to
2µSij + λδij Skk where λ is the second coefficient of viscosity. A similar transport
equation for the total enthalpy per unit mass, h0 =Et + p/ρ, can be obtained as

ρ
Dh0

Dt
=

∂p

∂t
+

∂(τijUi)

∂xj

=
∂p

∂t
+ Ui

∂τij

∂xj

+ τij

∂Ui

∂xj

, (8.2)

where the last term on the right-hand side is the dissipation rate of kinetic energy
1/2UiUi , with

E = τij ∂Ui/∂xj = τijSij .

The physical insights of this equation are obvious. The rate of change of the total
enthalpy is provided by the rate of change of static pressure and the rate of work
done by the viscous forces. It is also evident that even in the case of inviscid flows, h0

is not constant in time-dependent flows. Figure 13(a) shows the measured values of
total temperature, T0, which is proportional to h0, obtained in the experiments with
the 2 × 2a grid. Substantial reduction in T0 can be observed in the interaction area
of the expansion zone, whereas it remains relatively constant in the region upstream
and downstream of it. It is also evident from these data that most of the drop in
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Figure 13. (a) Total temperature profile in the case of the 2 × 2a grid. (b) Estimated values
of the terms appearing in the transport equation of total enthalpy h0. Dissipation data are
amplified by a factor of 10 in relation to the other.

T0 occurs at the beginning of the expansion zone which is expected from (8.2), and
correlates well with the temporal pressure gradients shown in figure 7(a).

In order to explore further the role of (8.2), each of its terms has been estimated
by using the data obtained here. The data obtained by the cross-wires at different
longitudinal locations were used to obtain a fairly accurate measure of the convective
term ρU1∂h0/∂x1 while the dissipation rate of kinetic energy E, has been provided by
the vorticity probe data. It was not possible to estimate the viscous term Ui∂τij /∂xj .

The results are shown in figure 13(b). All the data have been smoothed out for
clarity with exception of the dissipation rate, E. The term ρ∂h0/∂t , which has been
independently obtained through time-differentiation of the total temperature data,
closely follows the behaviour of the pressure derivative term, ∂p/∂t which has been
obtained by differentiating the pressure transducer data. These are the two dominant
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terms in the beginning of the expansion. The convective term ρU1∂h0/∂x1 is small
at the beginning of the interaction and upstream of it and grows slowly later on. It
remains always positive even when the other terms have negative values. At the end of
the interaction, ∂p/∂t diminishes, while ρDh0/Dt becomes positive, since it is mostly
provided by the convective term ρU1∂h0/∂x1. Downstream of the interaction zone, this
term is solely balanced by the dissipation term and the viscous term Ui∂τij /∂xj . The
fact that the term ρU1∂h0/∂x1 is positive may explain why the furthest downstream
longitudinal velocity profiles are slightly higher than those close to the grid where the
dissipation rate E is also high.

9. Turbulence modification through the interaction with expansion waves
Attenuation of turbulence is one of the major features of the outcome of the

application of a longitudinal straining on isotropic turbulence. Linear analysis is
expected to predict attenuation of turbulence as long as fluctuations of pressure,
velocity and temperature upstream of the expansion waves are small so that the front
is not substantially distorted.

Typically, the attenuation of turbulent fluctuations should depend on the expansion
wave strength during the straining, the state of turbulence of the incoming flow before
the interaction, and its level of compressibility.

Figure 14(a) shows the amplification/attenuation ratio, G, of the velocity vector
fluctuations defined as the ratio of the standard deviation of the fluctuations
downstream of the interaction σd to that upstream of the interaction σu, i.e. G = σd/σu.
Data available from the two velocity components of various experiments obtained by
X-wires and the wall pressure are plotted against the normalized distance from the
grid, x/M , where M is the mesh size.

The data of the 8×8 grid case, which are shown in figure 14(a), indicate attenuation
of longitudinal velocity fluctuations at all locations downstream of the grid. This
attenuation is not the same at different locations from the grid. It appears that
turbulence is most attenuated at the last measuring location where values of G close
to 0.5 can be observed.

Fluctuations of the lateral velocity component are little affected by the straining
and the interaction whereas pressure fluctuations at the wall show an attenuation of
about 50 % which does not change with downstream distance.

In an effort to find out how turbulent length scales are affected by the longitudinal
straining action, the longitudinal integral length scale L11 has been computed from
the experimental data of the auto-correlation functions of the longitudinal velocity
fluctuations, R11 after invoking Taylor’s hypothesis. Thus, with U 1 = ξ1τ it appears that

L11(x1) =

∫ ∞

0

R11(x1, ξ1) dξ1 = U 1

∫ ∞

0

R11(x1, τ ) dτ .

Typical data of the ratio GL11 = L11,d(ξ1)/L11,u(ξ1) plotted against x1/M are
also shown in figure 14(a). The data clearly show that the integral length scales
are amplified considerably through the interaction, as is expected. Most of this
amplification, however, is due to the increased ratio of the mean velocities U1d/U1u

because of the flow acceleration during the straining.
Attenuation of longitudinal fluctuations through the whole flow field have also been

observed in the case of the 4 × 4 grid (see figure 14b). Lateral velocity fluctuations
are attenuated close to the grid and amplified further downstream. The data obtained
with the vorticity probe seem to fit this pattern. The attenuation data presented
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here have been obtained in incoming flows, which are practically incompressible
since the Mach number is slightly below 0.3. The passage of the expansion waves,
however, accelerates the flow to Mach numbers of about 0.5 or more. Thus, during
the interaction, compressibility effects start to play a significant role and therefore
it is expected to affect the flow development. The data in figure 14(b) also show a
reasonably good agreement between the data obtained with the X-wires and those
with the vorticity probe. Pressure fluctuations seem to be attenuated substantially
throughout the whole flow field.

These wall pressure fluctuations are mostly the result of turbulence within the
wall boundary layer whereas the isotropic turbulence which acts as a free-stream
turbulence to the boundary layer has a secondary effect. In that respect, scaling with
the shock tube diameter D may be more appropriate than the mesh size M . These
data are re-plotted in figure 14(c). These pressure fluctuations are related to the local
shear stress. In fact, Willmarth & Wooldridge (1962) and Andreopoulos & Agui
(1996) found that the r.m.s. of pressure fluctuations is about twice the local wall
stress. The presence of free-stream turbulence increases the local skin friction slightly
and, therefore, the wall pressure fluctuations (Hancock & Bradshaw 1989). The data
in figure 14(c) suggest that the shear stress is higher at larger distances from the grid
before the interaction. This agrees with the notion that wall shear stress is higher at
locations closer to the origin of the unsteady boundary layer that is associated with
the shock foot. After the interaction, wall shear stress is significantly reduced because
of damped turbulent activities.

Figure 15(a) shows the ratios of the standard deviations, G = σd/σu for the
longitudinal and lateral velocity and vorticity fluctuations as a function of the
characteristic time scale, Lε/q , of the incoming turbulence. In addition to the locations
where vorticity measurements were carried out, some typical data obtained with X-
wire probes in several locations away from the grid were also plotted in the same
figure. To avoid overwhelming data information, only three data points of longitudinal
velocity fluctuations are plotted for each of the grids. For the 8 × 8 grid for instance,
the mid-flow-field point has a value of Lε/q =12.94 m s whereas its first measuring
point corresponds to Lε/q =10.2 m s and its last measuring point to Lε/q = 15.3 m s.
The corresponding values of G are between 1 and 0.6 with 0.8 the value at the
mid-field point.

The data of longitudinal velocity fluctuations clearly demonstrate that in addition
to Lε/q , G also depends on the particular grid used to generate the turbulent field.
Attenuation increases with increasing time scale within each of the flows generated
by the grids used in the present investigation. Fine grids are characterized by small
time scales and they attenuate velocity fluctuations more than coarse grids where time
scales are greater. The data shown above indicate that amplification depends on the
time scale of the incoming turbulence and on the grid, which suggests that the state
of the incoming turbulence affects amplification or attenuation.

It appears that lateral vorticity fluctuations attenuated the most with ratios between
0.74 and 0.42. The data also show that the attenuation is stronger in fine grids
with small time scales. Longitudinal vorticity fluctuations show, on average, a slight
amplification throughout the investigated range of Lε/q . Lateral velocity fluctuations
appear to be unaffected by the applied expansive straining.

In order to investigate the effect of the strength of the applied straining on
amplification/attenuation of turbulent fluctuations, the data of G have been plotted
in figure 15(b) against non-dimensional time Rt . The data clearly indicate that there
is an attenuation of longitudinal velocity fluctuations in all cases which becomes



Velocity and vorticity in weakly compressible isotropic turbulence 329

2.0(a)

(b)

2.6

1.2

0.8

0.4

0
10 20 30 40 50 60 70

σd—σu

Lε/q

2.0

2.6

1.2

0.8

0.4

0 2 4 6 8 10 12 1614

σd—σu

Rt

U1-rms

U1-rms in 8 × 8 grid

U1-rms in 3 × 3 grid
U1-rms in 4 × 4 grid

U1-rms in 2 × 2 grid

U2-rms
Ω1-rms

Ω2-rms

Figure 15. (a) Attenuation of velocity and vorticity fluctuations in expansion wave
interactions with turbulence as a function of its time scale Lε/q . (b) Attenuation of velocity
and vorticity fluctuations in expansion wave interactions with turbulence as a function of
non-dimensional time St .

stronger with increasing Rt within the same grid generated flow. Attenuation at a
fixed Rt is not uniquely defined and it depends on the grid. This suggests that the
state of turbulence as defined by its characteristic quantities plays a substantial role
in the outcome of the present interactions. One parameter such as Lε/q or Rt is not
enough to characterize the interactions.

The results in figure 15(b) also demonstrate that substantial attenuations take place
within a shorter time Rt in fine grids than in coarse grids. In the case of the 8×8 grid,
for instance, attenuation of 0.4 occurs within 1 non-dimensional time unit whereas in
the case of the 2 × 2 grid, attenuation of 0.28 (G = 0.72) takes places after �St =2.7.

Even in cases with short Rt , where the interactions are not rapid and therefore
RDT may not be applicable, attenuation of turbulent fluctuations has been predicted.
Ribner & Tucker (1953) investigated the case of isotropic turbulence through a
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contraction by assuming that turbulence can be represented by a superposition
of planar waves, and by considering the incoming state of turbulence, predicted
the change in the spectral densities as a function of the contracting length ratios
in the three directions. The decay of turbulence within the contraction was taken
into account through a correction function and the streamline curvature within the
contraction which stabilizes turbulence was not considered explicitly. For volumetric
ratios J = ρd/ρu between 0.75 and 0.88, values of the predicted gain, G, in longitudinal
velocity r.m.s. were between 0.5 and 0.8. Given that these values include viscous
corrections provided by an empirical decay relation, their agreement with the measured
values is reasonably good.

10. Spectral densities
Some further insight into the evolution of turbulence through the expansion waves

can be obtained by looking into the one-dimensional frequency spectra (power spectral
densities) of each of the three vorticity components. It is more meaningful to consider
the high-pass filtered part of the signals rather than the low-pass ones. Conservation
laws and RDT in the present case are usually considered on a moving frame of
reference associated with the travelling expansion waves which propagate with the
local speed of sound relative to the upstream flow, Cu. In the context of RDT,
the wavenumber will be reduced by interaction by the volumetric ratio J and the
velocity will increase by J −1. Thus, it appears that the downstream wavenumber
will be kd = Jku and Cd = J −1 Cu. If we consider a representative longitudinal wave
which has the form exp(kux1) at a point upstream of the interaction and exp(kdx

′
1)

downstream of the interaction, then kux1 = kuCut and kdx
′
1 = kdCdt . By substituting

the relations between upstream downstream values of k and C, it can be shown that
kdCd = JkuJ

−1Cu = kuCu. Thus, the temporal frequency f does not change through
the interaction and it is f = kuCu/2π = Cu/λu = kdCd/2π = Cd/λd in both cases. In that
respect, the present changes in the spectral densities will be considered at constant
frequency f .

Figure 16(a) shows the frequency spectra of the vorticity components Ω1, Ω2 and
Ω3 upstream and downstream of the interaction obtained in the flow with the 2 × 2a

grid. The upper limit in the wavenumber scales is defined by the temporal resolution
of the instrumentation and the lower limit is associated with cutoff frequency of
the high-pass filtering which corresponds to large eddies with size of the order of
the shock tube diameter D. For instance, for D =0.3 m Cu/D = 1216 Hz. For the
size of the vorticity probe lp = 1.3 mm, Cu/lp = 280 kHz. However, if Uu =100 m s−1

is used, then the time scales at error start above 100 kHz. The location of the
maximum value which is associated with the most energetic eddies appears to
be between 10 and 15 kHz, which corresponds to wavelengths between λ≈ 2 and
2.4 mesh sizes M . The interaction slightly shifts the spectral content of the two
lateral vorticity components towards higher frequencies. There is also attenuation of
their amplitude in frequencies greater than about 8 kHz. The amount of attenuation
across the wavenumber spectrum has been further explored by considering the ratio
of the corresponding spectral densities before and after the interaction at the same
frequency, 〈G(f )〉HP = 〈f Φd(f )〉HP/〈f Φu(f ))〉HP. Values of 〈G(f )〉HP corresponding
to the data of figure 16(a) are shown in figure 16(b). There is a variation of 〈G(f )〉HP

across the spectrum. Significant attenuation in the spectral content of the lateral
vorticity components of the data occurs at frequencies f > 8 kHz with a maximum
in the range 40 kHz <f < 60 kHz. In terms of wave length λu, this range corresponds
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grid. (e) Energy transfer spectrum T̂ (k) in the case of 2 × 2a grid.

to 0.40 < λ/M < 0.71. If this range is compared to the most energetic eddy size of
λ/M = 2, then we can conclude that most of the attenuation process takes place in
eddies with sizes of a fraction of the energetic ones.

Both graphs in figure 16(b) indicate some amplification of the fluctuations at some
low frequencies with f < 8 kHz which corresponds to λ/M > 3.6. Amplification of
longitudinal vorticity fluctuations is observed in all frequencies below 40 kHz.
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Most energetic Most energetic Most attenuating Most attenuating
frequency (kHz) λ/M frequency (kHz) λ/M

Mesh size
Grid M (mm) U1 Ω2 U1 Ω2 U1 Ω2 U1 Ω2

2 × 2a 12.7 9 10.5 3.19 2.75 <2.5 60 >10 0.5
3 × 3 8.5 9 10.4 4.77 4.12 30 50 > 1 0.86
4 × 4 6.35 8 10.2 7.10 5.6 40 65 1.43 0.88

Table 5. Summary of energetics.

Values of the vorticity and velocity fluctuations ratio 〈G(f )〉HP for the case of
the 4 × 4 grid with mesh size M = 6.35 mm are shown in figure 16(c). Substantial
attenuation of longitudinal velocity fluctuations can be observed through the whole
range of frequency while the lateral velocity fluctuations show moderate attenuation
in the range of λ/M > 2 and λ/M < 11.5. Longitudinal vorticity fluctuations are
amplified and lateral vorticity fluctuations are attenuated significantly throughout the
frequency range. The data for the 3 × 3 grid exhibit a significant attenuation of both
vorticity and velocity fluctuations of all components in the range of 0.75 < λ/M < 1.57.
The degree of attenuation of lateral vorticity fluctuations appears to be higher in the
present case of a finer grid. There is also some evidence of rather low amplification of
lateral velocity fluctuations and longitudinal vorticity fluctuations in the wavelength
ranges of the spectra for λ/M > 0.75.

A summary of the findings of the spectral analysis is shown in table 5. The location
of the maximum amplitude which is considered as the most energetic frequency shifts
slightly to higher frequency in the cases of vorticity fluctuations than in the cases
of velocity fluctuations. In terms of normalized wavelength λ/M , it appears that
the maximum spectral content in the cases of vorticity fluctuations occurs at shorter
wavelengths than the peak in the velocity spectra. One other characteristic of vorticity
is that eddies with sizes of a fraction of the energy-containing eddies attenuate the
most.

The dynamics of turbulence can be further explored by considering the transfer
of energy from larger to smaller eddies and the interactions among the Fourier
modes. Of particular interest is the evolution of kinetic energy of the Fourier mode
defined as Ê(k) = 1/2|û∗

i (k)ûi(k)| where ûi(k) is the Fourier transform of the velocity
component ui and ∗ denotes a complex conjugate. The evolution equation for Ê(k)
in incompressible isotropic flows according to Pope (2000) has the form

∂Ê(k)/∂t = T̂ (k) − D̂(k),

where T̂ (k) represents the energy transfer between modes, and D̂(k) = 2νk2Ê(k) is
related to the dissipation spectral density. When the above equation is summed
over all wavenumbers k, its left-hand side is dq/dt and the last term in the
right-hand side is the dissipation rate ε. The summation of T̂ (k) over k is zero because
the various contributions of energy transfer between the modes cancel out. Then, it
appears that dq/dt = −ε which is the classical relation of the turbulent kinetic energy
decay for isotropic turbulence. According to Domaradzki (1992), T̂ (k) is totally
balanced by D̂(k) at wavenumbers beyond those at the energy containing range.
Thus, T̂ (k) ≈ D̂(k) and therefore the dissipation spectrum can provide information
on the energy transfer T̂ (k). The present flow is considered weakly compressible
and the dilatational dissipation εd =4/3SkkSkk is about 8 % of the total dissipation
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ε. Thus, it appears that the dissipation rate can be approximated by ε ≈ vΩiΩi .
Since k2Ê(k) = 1/2Ω̂i(k)Ω̂i(k) then it follows that D̂(k) = νΩ̂i(k)Ω̂i(k). Therefore, by
summing up the individual spectral densities of the three vorticity components shown
in figure 16(a), we can obtain information about the energy transfer T̂ (k). The validity
of the present assumptions is in the range of frequencies greater than 18 kHz which
corresponds to kη > 0.06. The data are re-plotted in figure 16(e) and they clearly
suggest that T̂ (k) is nonlinear with kη. In the range of kη between 0.06 and 0.3, the
results show an exponential decay of T̂ (k) ∼ exp(−αk) with an estimated value of
α = 7.5η fitting the present data obtained at Reλ =488. After the interaction, the data
show a larger exponential decay, possibly because of processes related to the return
to isotropy.

11. Conclusions
The effects of straining and the associated bulk dilatation provided by a set

of moving expansion waves on isotropic turbulence have been investigated experi-
mentally. The present flow configuration does not involve any streamline curvature
as in the cases of expansion around corners.

Flows with Reynolds numbers based on Taylor’s microscale ranging from 310 to
488 have been configured. The flow fields have been investigated by measuring the
three-dimensional velocity and vorticity vectors, the full velocity gradient and rate-
of-strain tensors with instrumentation of high temporal and spatial resolution. This
provided estimates of dilatation, compressible dissipation and dilatational stretching
to be obtained.

The relatively long duration of the straining region of the expansion zone allowed
for a temporally and spatially resolved analysis of all the quantities obtained by
decomposing all the signals into their low- and high-frequency contents.

Although the average value of the applied straining was between S11 = 160 s−1 and
250 s−1, the flow accelerated from a Mach number of 0.23 to about 0.56, a value which
is more than twice the initial one. Amplitude of fluctuations of the strain rate S11 were
of the order of 4000 s−1 before the application of straining, and reduced by about
2.5 times downstream of the interaction. One of the most remarkable features of the
suppression of the turbulence is that this process peaks shortly after the application
of the straining where the pressure gradient has a minimum. It was also found that
the total enthalpy variation closely follows the temporal gradient of pressure within
the straining region and peaks at the same location as the pressure gradient.

The present results indicate that the outcome of the interaction depends strongly on
the upstream turbulence of the flow which has been generated by each individual grid.
Longitudinal velocity fluctuations have been observed to attenuate in all experiments
at large times. The results have shown that attenuation within a given grid flow
increases with time and distance from the grid which also suggests that attenuation
increases with increasing Reynolds number, because Reλ also increases with distance
or time. The data of velocity fluctuations in the lateral directions show no consistent
behaviour change or some minor attenuation through the interaction.

Spectral analysis has indicated that attenuation of fluctuations is not the same
across all wavenumbers of the spectrum. The magnitude of attenuation appears to
be higher in cases of finer mesh grids.

Vorticity fluctuations of the lateral components were attenuated substantially
more than the longitudinal velocity fluctuations. There is evidence suggesting that
their attenuation increases with increasing Reλ. Analysis of the spectral content of
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these fluctuations indicated that their attenuation also depends on the wavenumber.
Although it is expected that most of the impact of the interaction will be felt on the
high-wavenumber part of the vorticity spectra since most of the vorticity fluctuations
originate from small scales, the attenuation peaks at mid-range wavenumbers and
continues at high wavenumbers. Fluctuations of vorticity in the longitudinal direction
are affected considerably less than those in the lateral direction by the applied
straining.

The financial support provided by NASA Grant NAG3-2163 and AFOSR Grant
F49620-98-20358 is greatly acknowledged.
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